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1. Introduction. Let X denote a random variable having density function 

f{x\6) = a(x)/A(6), 6<x<b<oo, (1.1) 

where a(x) is a positive, continuous function on (0,6), A(6) = $a(x)dx < oo for every 

6 > 0, 6 is the parameter, which is distributed according to an unknown prior distribution G 

on (0,6). Two typical examples of (1.1) are: (I) the exponential distribution with a location 

parameter: f(x\6) = e-(x~ö), x > 6, and (II) the Pareto distribution: f(x\6) = a6a/xa+l, 

x>6. 

We consider the problem of testing the hypotheses HQ : 8 < 60 versus Hx : 6 > 60, where 

6o is known and 0 < 60 < b. The loss function is 1(6,0) = max{0 - 60,0} for accepting H0 

and 1(6,1) = max{6>0 - 0,0} for accepting Hx. A test 8(x) is defined to be a measurable 

mapping from (0,oo) into [0,1] so that 5(x) = P{ accepting H^X = x}, i.e., 5(x) is the 

probability of accepting Hi when X = x is observed. Let R(G, S) denote the Bayes risk of 

the test 6 when G is the prior distribution. Given that /0°° 6dG(6) < oo/a Bayes test SG is 

found as 

SG(x) = l    if    E[6\X = x] > do;     SG(x) = 0    if    E[0\X = x]<eQ. (1.2) 

Because E[6\X = x] involves G, the above solution works only if the prior G is given. If G is 

unknown, this testing problem is formed as a compound decision problem and the empirical 

Bayes approach is used. Let XUX2, ■ • ■ ,Xn be the observations from n independent past 

experiences. Based on Xn = (XUX2, ■ ■ • ,Xn) and X, an empirical Bayes rule 5n(X,Xn) 

can be constructed. The performance of 5n is measured by R(G,Sn) - R(G,5G), where 

R(G,8n) = E[R(G,5n\Xn)\. The quantity R(G,Sn) - R(G,5G) is referred as the regret 

Bayes risk (or regret) in the literature. 

This empirical Bayes approach was introduced by Robbins (1956, 1964).   Since then, 

it has been widely used in statistics.   For the family (1.1), some problems of statistical 



inference based on the empirical Bayes method have been considered by Prasad and Singh 

(1990), Liang (1993), Datta (1994), Huang (1995), Balakrishnan and Ma (1997), Huang and 

Liang (1997), Ma and Balakrishnan (2000), among others. In this paper, we consider the 

testing problem and study the empirical Bayes tests for the family (1.1). The optimal rate 

of convergence of monotone empirical Bayes tests is obtained and a test with the optimal 

rate is constructed. 

The paper is organized as follows. In Section 2 we provide a few preliminary results. In 

Section 3 we construct a monotone empirical Bayes test 6n and obtain an upper bound of its 

regret. In Section 4, a minimax lower bound of the regrets of monotone empirical Bayes tests 

is obtained. Since the rates in the upper bound of Section 3 and lower bound of Section 4 

coincide, the optimal rate is identified. As a byproduct, we see that 6n achieves the optimal 

rate of convergence. The proofs of main results in Section 3 and 4 are given in Section 5. 

2. Preliminary. We assume that P(8 > 60) • P(0 < do) > 0 in this paper. If P{6 > 

8o) = 0 or P(0 < 0O) = 0> we know which action we should take regardless of the value of x. 

For example, if P(6 < 6Q) = 0, we accept Hi always. So both two cases are excluded in the 

testing problem. We also assume /*? = JS°0dG{0) < oo so that the Bayes analysis can be 

carried out. 

Let fG(x) = ff(x\6)dG(6) be the marginal pdf of X, and 4>G{x) = E[9\X = x] be the 

posterior mean of Q given X = x. Note that <f>G(x) is increasing and <J>G(0o) < 00. Then the 

Bayes rule stated in Section 1 can be represented as 

5G(x) = 1   if 4>G(X) >e0^=>x>cG;     5G(x) = 0  if <f>G{x) <60*=>x<cG. 

where cG = mi{x € (Ö0, b) : <f>G{x) > 6Q}. cG is called the critical point corresponding to G. 

Since the Bayes rule 6G is characterized by a single number cG, a monotone empirical 



Bayes test (MEBT) can be constructed through estimating cG by Cn(Xi,X2, • - • ,Xn), say, 

and defining 

Sn = { 
1       if        X> Cn, 

0       if        X < Cn. 

(2.1) 

Then the regret of 5n is 

R(G, 8n) - R(G, SG) = E r w(x)a(x)dx, (2.2) 

where w{x) = aG(x)[80 - <j>G{x)\ and aG{x) = ^x] dG(8)/A{6). 

To consider the rate of convergence of R(G,Sn) - R(G,5G), we assume that for some 

r > 1, o>a{x) is r-times continuously differentiable and for i = 0,1, • • •, r, 

sup    \aG
](x)\ <Br < oo. 

60/2<x<b 

(2.3) 

Furthermore, we assume that 

g(cG) = C?'(cG) ^ 0. k (2.4) 

From (2.3), we know that <f)G(x) is continuous. Then CQ > 60 since (j>G{60) < 00. Also, from 

(2.3) and (2.4), 60 < b since A(b-) = limxT6 A{x) = 0. 

3. An upper bound. We shall construct a MEBT and find an upper bound of its 

regret. The kernel method is used in the construction. Let K0(y) be a Borel-measurable, 

bounded function vanishing outside the interval [0,1] such that 

[1fK0(y)dy 
Jo 

(3.1) 
1   if    3=0, 

0   if    i = l,2,---,r. 

Suppose \K0(y)\ < B. Denote Kx{y) = /<? K0(s)ds and un = n-^2r+1\ For any x e (0,6), 

define 
c—Xi 

W.lx)=*£i£?&-L±«mi.       (3.2, 
nun fr{    a{Xj)        nfr{    a{Xj) 



It is shown later that Wn(x) is a consistent estimator of w(x).   Since P{6 < 0O) > 0, 

aG(x) > 0 for x > 0O. Thus cG = /ö
6
0 /[«,(x)>o]^ + 0O- Let 

Cn =   /       I[Wn(x)>0]dx + 6Q, 

where 

(3-3) 

dn = < 

(0o + lnn)A& if     a(6-) > 0, 

inf{a; > 0O : a(x) < w„1/3} A (60 + Inn) Ab    if     a(6-) = 0. 

Then we propose a monotone empirical Bayes test 5n(x) by 

^n = 

1    if     x>cn, 

I   0     if      x < Cn. 

Note that dn —> &. As rfn > CG, 

(3.4) 

Cn-cG = - f G I[Wn{x)<o]dx + /    V„(x)>o]da;- (3.5) 
JÖO JcG 

Note that <5n is a monotone rule. It has good performance for smaJl'samples (See Van 

Houwelingen (1976)). Next we show that 5n is a good procedure not only for smaU samples 

but also for large samples. 

Prom (2.3), w'(x) is continuous and w'(x) = g{x){60 - x)/A(x). Since g(cG) ^ 0 and 

CG > 0o, W
'(

C
G) < °- Then w'(x) < 0 in a neighbourhood of cG. For e > 0, define 

Ae = mm{-w'(x) : x G [cG-e, cG+e]}. Suppose eG > 0 such that 60<cG-eG< cG+eG < b 

and Aen > 0. Then for 0 < e < eG, Ae > A€G > 0. 

Lemma 3.1. Let ä andw be the supermum values ofa(x) and -w'(x) on [cG-eG, cG+eG] 

respectively.  Then 

R(G, Sn) - R(G, 6G) < (0o + ßG)eG
4E(cn - cGf + l/mwE^ - cGf. (3.6) 



Lemma 3.2. Let M = B2c%{3 + 16Br[a(cG)]2}. Then 

(3.7.1)   limn^^Cn-CG^^M/KccXCcG)]2;     (3.7.2)   lim n^^c« - cG)4 = 0. 

The proofs of Lemma 3.1 and Lemma 3.2 are given in Section 5. Note that, as eG -> 0, 

äw -> a(cG)|w'(cG)|. Therefore the previous two lemmas give the following theorem. 

Theorem 3.1. Let M be the number defined in Lemma 3.2.  Then 

lim n^[R{G,8n) - R(G,SG)] < M/[2a(cG)\w'(cG)\}. (3.8) 

To consider the uniform convergence rate of Sn, we define a class of prior distributions. 

Denote 

Q = {G : G satisfies \iG < /x0, (2.3), CQ < cG < p0,   ™ , W{x)(> L}, (3.9) 

where /x0 < oo, 00 < CQ < p0 < 6, Q) = (CQ + ö0)/2, po = (2p0) A ((p0 + &)/2) and L > 0. 

Assume that £ is not empty in the following. 

Theorem 3.2. For some I > 0, 

sup[Ä(G, Sn) - R(G, 5G)] < I ■ n'^ (3.10) 
GeG 

4. A lower bound. We shall obtain a minimax lower bound for the regrets of all 

monotone empirical Bayes tests first. In the following parts of this paper, lu l2, ■•• stand 

for the positive constants, which may have different values on different occasions. 

Let C be the set of all estimators c* with c*n > 0 and let V be the set of all empirical 

Bayes rules of type (2.1) with cn = c*n e C. Let T = {fG(x) = J f(x\6)dG(6) : G G 0} and 
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Cf be the critical points corresponding to / € F- 

Lemma 4.1. 

inf   sup[fi(G,<5:)-Ä(C?,5G)] 

> h sup {(C/l - cf2)
2 : /[^/iS) - \[M?)]2dx < ^/n>   /i. /a G JP>- 

Suppose that d € £ with density 51 (0) andc^ € (co,po). Let 52(0) = (l+w>n)_1bi(ö)+ 

tCM^ff(!^L)]/[tf>o], where //n = ti A(ch+tun)H(t)dt and F(t) is a function such that 

(1) it has support [-1,1], (2) j\H(t)dt = 0 and &H(t)dt * 0, and (3) it has bounded 

derivatives upto order r. Let ft(x) = a(x) ß ^d0 for i = 1,2. 

Lemma 4.2. ,4s n is large, /2 G .F, 

/[\/ÄÖ*Ö " \fM*)?dx ^ bin    and    (ch - chf > lzn  w 

Theorem 4.1. For some I > 0, 

inf   sup[#(G, 5*) - R(G, 5G)] > I ■ TT&. 

Theorem 4.1 says that n~^ is the best possible rate of convergence. With the result in 

(3.10), we conclude that n'^ is the optimal rate of monotone empirical Bayes tests and 5n 

defined by (3.4) achieves this rate. So 8n has good performance not only for small samples 

but also for large samples. 

5. Proofs. 



5.1. Proof of Lemma 3.1.   Prom (2.2), 

R{G,Sn)-R(G,5G)   <   E[I[lCn-Ca]>£a]       w(x)a(x)dx] + äE[I[lCn-CGl<£a]       w(x)a(x)dx] 
JCn Jcn 

<   {Go + ßG)eG
4E(cn - cG)A + l/2äwE(cn - cG)2, 

where fg w(x)a(x)dx < (0O + HG) and by Taylor expansion 

hcn-ca\<ea]   r H*)dx = -V2 X ^'(Cn)(Cn ~ CQ? hcn-cG\<€a) < l/2Ü>(c„ - CGf'. 

5.2. Proof of Lemma 3.2.   Recall Ae > 0 for e < cG. For e < eG, Let 771 = cG - e and 

m = CG + e. Rewrite W„(s) = £ E"=i Vn(Xj,x), where 

Note that Vn{Xj,x) are i.i.d. with for fixed x and n. Let wn(x) = E[Vn{Xj,x)], Zjn = 

Vn(Xjix)-wn(x), ol = EZ)n and 7n = £[|Zin|3]. Denote pn = min{a(a;) : x G fai -«», %]}■ 

Then we have the following lemma. Its proof is given in the subsection 5.5. 

Lemma 5.1. The following statements hold for large n. 

(i) For x G [0o, Vi) U (772, 6), |w(aO| > eA£ as e < eG; 

For x G [60,dn], \w(x)\ < (20o + lnn)Br. 

(ii) For all x G [60,dn], \wn(x) - w(x)\ < BrBur
nx = l/2/?(x). 

(iii) For x G [771,772], o\ < m(pnun)-
1, m = (772 - 0O + un)2B2Br; 

For x e [0o, dn], ol < J2 (In n)VT4/3- 

(iv) Forxe [771,%], 7n < ^(Pn^n)-2/ For x G [0o,rfn], 7n < /4(lnn)3u-8/3. 

(v) For x G [0o, dn], w(:c) > j9(x) => wn(x) > l/2«;(x). 

(vi) Forxe [0o,4], w(x) < -)9(i) => wn{x) < l/2w{x). 

Since cG < b, assume that cG < dn for all n without loss of generality. Based on (3.5), we 



decompose c„ - cG as follows: 

Cn_CG = _/1-/3-J5 + /2 + /4 + /6, (5-1) 

where 

h = I\ I[Wn(x)<o]dx, h = /„t I[wn(x)>o]dx, 

h = X,T I[Wn(x)<oM*)<ß(m))dx>   74 = SZ I[Wn(x)>o,w(x)>-ß(rv)}dx> 

h = X,T V»W<MW>«ii)]dx'   Je = Ho hWr>{x)>oMx)<-ß(m)]dx- 

Note that E(cn - cGf < 2{E[dnh + /f + i? + <W> + tf + $}• To Prove (3-71)> we want 

to show that 

O On M 

(5-2-D l^Ä*/i + if + 42] < 4[a(cc)^(cG)]2' 

and 
M 

(5-2-2) JÖS^M» + ^ + Il\ < 4[a(ccK(cG)]2- 

We only prove (5.2.2).   The proof for (5.2.1) is similar.   For w(x)  <K -ß{x), wn(x) < 

l/2w(a;) < 0 from (vi) of Lemma 5.1. Then we have 

W(s) > 0) = P(-— £ ^ >    Van       ) ^ P(^^ E Z'» > —^—y 

Applying Theorem 5.16 on page 168 in Petrov (1995) to the left-hand-side of the above 

inequality, P(Wn(x) > 0) < [1 - H^)} + ^"JW = S^ + Tn{x)> whsK 

A is a constant and $(•) is the cdf of #(0,1). For x G [%,<*„], w(x) < -eA€. Then 

w(x) < -ß(x) as n is large since <dn - 0. Then P{Wn(x) > 0) < 5„(x) + Tn(x). Note 

that <r* < Minn)V4/3 and 7n < ^(lnn) V"3- Then Sn(x) < 1 -$(n^) and T„(x) < rT1 

as n is large. Thus 

4.EM=*. r *w*) > °)& * «a1 - *("i/4)+n"i]=o(«"2r/<2'+i>)-  (5-3) 

For x e [co.ifc], K(x)| > A£. Then Jf < A£-2[/c"G
21[w(x)>-ß{m)]™'(x)dx}* < Af{ß(m)]2 by 



letting y = w(x)/ß(m)- Therefore 

lim lim n^ll < [2BrBcG/w'(cG)]2. (5.4) 
£_,0 n—*oo 

By Holder inequality, 

/•rj2 f^z o 
E[lt\ < /    P{Wn(x) > 0)\w(x)\3IMx)<-ßim)}dx x /    \w(x)\- I[w{x)<-ßim)]dx. 

JCQ JcG 

Similar to if, /£ |^(a;)|-3/[w(x)>_^2)]^ < 1/{2A£[/ö(T72)]
2
}. Since w(x) < -ß{m) < -ß(x) 

for all x G [CG,T?2], P(W„(x) > 0) < Sn(x) +Tn(x) and 

£[/f]<l/{2^(/ty72)]2}-[/    S„(x)Kx)|3eZx+/    Tn(x)Kx)|3dx]. (5.5) 
JCQ JcG 

For a; G [cam], °l < "i(p„Wn)_1, 7n < feCPnUn)-2- Therefore 

/•TJ2 „ 1    rmr ,\/nunpn\w(x)\.,,   . ..a   ,, , ,    ^       6m ,_ „, 
l Ä,(x)K*)|^ < z I [1 - «(^_^U!)]|„(x)M»)<b 55 j^j,   (5-6) 

and 

r Tn(x)Kx)|3dx < 8Al3e/(n2ulp2
n). k (5.7) 

•/CG 

Combining (5.5), (5.6) and (5.7), we have 

lim lim n^E[lt\ < 3B2cG/[2a(cG)w'(cG)]2, (5.8) 
e—tQn—*oo 

Then (5.2.2) follows (5.3), (5.4) and (5.8).  Thus (3.7.1) is proved.   (3.7.2) can be proved 

similarly. The details are omitted here. Now we complete the proof of Lemma 3.2. 

5.3.   Proof of Lemma 4.1.   Denote C = {on = c*n V CQ A p0 : < G C}.   For < G C, 

5n = < V Co A po G C. Define a = {a(x) : x G [CQ, po]}- Then a > 0 and 

1°° w(x)a(x)dx>  f    w(x)a(x)dx > a I    w(x)dx = -=w'(cn)(cn - cG)2, 
./c* Jc„ -/c„ * 

where c„ is an intermediate value between c„ and cG.   Clearly, c„ G  [co,/?o]-   Therefore 

K(cn)| > L. Then /c<? w(x)a(x)dx > Zi(c„ - cG)2 and 

inf sup M /     u>(x)a(x)dx] > /1 inf_sup E(cn - cG)2. 
CneCGeg      7c- CnECCcg 

10 



Note that CcC. Using (2.2), 

inf sup[Ä(G, O - R(G, 6G)} > h inf sup E(cn - cGf > h mf sup E(c*n - cGf. 

Prom the results in Donoho and Liu (1991) (Theorem 3.1 and the remark after Lemma 3.3), 

inf sup E(c*n - cGf > h sup {(ch - chf : f[Jh(x) - Jh&fdx < l2/n, A, f2 e ?}■ 
<€C Geg •> 

Then Lemma 4.1 is proved. 

5.4. Proof of Lemma 4.2. Clearly, as n is large, Co < ch - un < ch + un < p0, 

g2{6) > 0 and ch € (co, *>). Then f2 G T. Note that JJ if((0 - ch)Kx)M = 0 for a; < Co 

or x > po, and *(*) = 0 =* x < (?o => M*) = 0- Also for G € <7, J2* dG(0)/A(<9) > 0. 

Then 

JO      A(c7) -'co «n i 

lyfKix) ~ ^fW)}2   <   I[M*)>o]lfi(x)-f2(x)?/fi(x) 

A(8) 

Note that /in = /^ A(C/l + tun)H{t)dt = 0(un) and 

r a{x)[(X H{6^^)defdx<hul I' a(ch+yun)[[y H(t)dtfdy = 0(ul). 

Then we have 

/ffx/ÄW - V^]2^ ^ «ilOCtiT1) + 0(«r2)] < hin. 

On the other hand, we have [w2{ch)f = [w2(ch) - w2(ch)}2 = [w'2(ch)]2(ch - ch)\ where 

ch is an intermediate value between ch and ch.   It is easy to see that [w'2{ch)f < l/h- 

Then (ch - chf > h[w2{ch)f. Note that 

M<*)]2 > l2U2r2[[Ch(0o - 6)H^^-)def > htZifVo - Ch+tUn)H(t)dt]* 
JO Mn *■ 

and /°! if (t)dt ^ 0. Therefore (ch - chf > 13TC&I. The proof of Lemma 4.2 is complete 

now. 

11 



5.5. Proof of Lemma 5.1. Noting that w(x) is decreasing on (0O, b) and w{cG) = 0, 

\w(x)\ > \w(cG - e)\ A \w(cG + e)| for x € (0O, »7i) U Ofc>&)• Since w'(x) > A< for * G ^' ^ 

Kcc - e)| > A€e and |tü(cc + e)| > Aee. Then \w(x)\ > Aee. On the other hand, since 

4>G{x) < x and aG{x) < Br, \w(x)\ < (260 + lnn)Br for x G [0O,<U Then (i) is obtained. 

With loss of generality, assume that un < 60/2 for all n. It is easy to verify that w{x) = 

(60 - x)aG(x) + tfaG(s)ds. A straight forward computation shows that for x e [60,dn], 

\E[Vn(Xjt x)] - w{x)\ < <(x - 60 + un)BrB. Then (ii) is proved. Note that 

°l < E[V{X^ n)]2 = [ _£L__-[(*o - x)K0(t) - unKx{t)UG{x ~ unt)dt. 

Therefore a2
n < m(pnun)"

1 for x e [rjiM and a\ < h^nfu'^ for x G [0o,dn]-   The 

results for 7n can be proved similarly. This completes the proofs of (iii) and (iv). 

ForrrG [60,dn],ifw{x)>ß(x), 

wn(x) _ w(x) + [wn(x) - w(x)} > w(x) - ß{x) + ll2ß{x) ^ 1 
w(x) ~ w{x) ~    w{x) - ß(x) + ß{x)    ^   2 

Then (v) is proved, (vi) can be proved in a similar way. 
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